
UCRL-CONF-208403

Toward the Automated
Generation of Components from
Existing Source Code

D. Quinlan, Q. Yi, G. Kumfert, T. Epperly, T.
Dahlgren, M. Schordan, B. White

December 6, 2004

Second Workshop on Productivity and Performance in
High-End Computing
San Francisco, CA, United States
February 13, 2005 through February 13, 2005



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Toward The Automated Generation of Components from Existing Source Code

Daniel Quinlan
Qing Yi

Gary Kumfert
Thomas Epperly
Tamara Dahlgren

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
P. O. Box 808, Livermore CA, 94551 USA

{dquinlan,yi4,kumfert,tepperly,dahlgren}@llnl.gov

Markus Schordan
Institute of Computer Languages
Vienna University of Technology

Argentinierstrasse 8/4/13, A-1040 Vienna, Austria
markus@complang.tuwien.ac.at

Brian White
Computer Systems Laboratory

Cornell University, Frank H. T. Rhodes Hall
Ithaca, NY 14853, USA
bwhite@csl.cornell.edu

Abstract

A major challenge to achieving widespread use of soft-
ware component technology in scientific computing is an
effective migration strategy for existing, or legacy, source
code. This paper describes initial work and challenges in
automating the identification and generation of components
using the ROSE compiler infrastructure and the Babel lan-
guage interoperability tool. Babel enables calling inter-
faces expressed in the Scientific Interface Definition Lan-
guage (SIDL) to be implemented in, and called from, an
arbitrary combination of supported languages. ROSE is
used to build specialized source-to-source translators that
(1) extract a SIDL interface specification from information
implicit in existing C++ source code and (2) transform Ba-
bel’s output to include dispatches to the legacy code.

1 Introduction

Contemporary multi-disciplinary, multi-scale, multi-
physics simulations are increasingly becoming large, com-
posite applications consisting of new and existing compo-
nents implemented in different programming languages by
disparate teams. These factors present several challenges to
developers of such systems that, if dealt with manually, are
time-consuming and error prone. This paper addresses an
automation technology for the extraction and implementa-

tion of components within the context of a component ar-
chitecture tailored for scientific computing.

Component technology is industry’s answer to at least
two of the three major concerns plaguing large-scale com-
ponentization efforts; namely, interoperability of software
written in different languages, interoperability of software
running on different platforms, and maintenance and evo-
lution of large composite systems with multiple third party
dependencies. Component architectures from industry in-
clude CORBA [3], Microsoft COM [14], and Sun’s Enter-
prise Java Beans (EJB) [5]. These architectures establish
the framework in which compliant components interact. For
instance, EJB assumes all components are implemented in
Java (or JNI), thereby leaving the language interoperabil-
ity issue to component developers to address. Unlike com-
mercial applications, large scale numerical simulations have
additional constraints unique to the scientific computing do-
main such as high performance, a wide variety of often one-
of-a-kind computing platforms, and a need to migrate a sub-
stantial body of code to a new programming paradigm.

The Common Component Architecture (CCA) Fo-
rum [1] is working to deliver component technology suit-
able for large scale numerical simulations. Babel provides
the Scientific Interface Definition Language (SIDL) and
associated language interoperability tools that undergirds
CCA-compliant frameworks. Current best practice for mi-
grating legacy source code to CCA components does not re-
quire modifying existing code but may involve substantially



rethinking the interfaces and writing additional code by
hand that bridges Babel’s language bindings to the legacy
code.

In this paper we address the automated generation of
the bridging code between C/C++ libraries and their CCA-
compliant component wrappers. The work employs the
ROSE compiler tools to build specialized translators that
use a library’s header files to generate the SIDL file and
bridging code required by the CCA framework. Such an
automated approach is critical to converting legacy codes
to components in sufficient numbers to achieve the econ-
omy of scale that makes component technology so effective
in other domains. Currently our work is limited to C and
C++ libraries. Our ongoing work includes adding a FOR-
TRAN90 frontend to the ROSE infrastructure, which will
enable us to apply similar techniques to convert FORTRAN
libraries to components in the future.

The major technical challenges of automatically map-
ping libraries to SIDL code come from two aspects. First,
to allow all-to-all interoperability among its supported lan-
guages, Babel defines SIDL with a narrow intermediate
type-system and inheritance model. The ROSE translators
thus must extract the necessary (often implicit) information
embedded in the library and map the C/C++ type system
into one expressible in a proper SIDL file. Second, pro-
gramming in the CCA component model has a more event-
driven and less imperative feel than traditional program-
ming due to its focus on services. For instance, a CCA
component rarely explicitly creates all the lower-level com-
ponents it depends on to function. Instead, it typically reg-
isters what capabilities it provides and which capabilities it
depends on to the CCA framework in response to an event,
which usually takes the form of a creation request, but can
also be a connection or disconnection request. Then the
CCA component typically is inactive until one of its pro-
vided capabilities is invoked.

Our present work has addressed the first challenge by
translating C++ types into equivalent SIDL types when pos-
sible, and conservatively using theopaquetype in SIDL (in-
dicating no information is known about the type) if no suit-
able translation is available. The work to address the second
challenge is still ongoing. Specifically, our future work will
include techniques to automatically cluster global functions
and classes into different components (our current imple-
mentation simply places all global types in a library into a
single component). Further, we will automate the gener-
ation of CCA components, which are independent units of
composition that implement thegov.cca.Component inter-
face. More details are provided in Section 3.4.

Although C and C++ are only two of the modern lan-
guages supported by Babel and CCA, the their type system
represents one of the most complex and comprehensive type
systems in existing statically-typed languages. For exam-

ple, generating SIDL specifications for a C/C++ library re-
quires the translation of overloaded functions and operators,
classes with multiple inheritance, C++ templates, function
pointers, and variable number of arguments, many of which
can be ignored when translating smaller languages such as
Java and FORTRAN, which do not have multiple inheri-
tance or C++ templates. We thus expect that many tech-
niques we develop for translating C/C++ libraries to CCA
components will similarly apply to Java and FORTRAN as
well. Further, much of the design principles we developed
are language independent, and can apply in general to all
modern programming languages.

2 Infrastructure

Our component generation infrastructure includes both
ROSE [21, 24] and Babel [16]. ROSE is a compiler infras-
tructure that offers mechanisms for analyzing C++ source
code and for building source-to-source translators, which
in this paper are used to process library code and gen-
erate component implementations. Babel is an Interface
Definition Language (IDL)-based language interoperability
tool akin to CORBA but tailored for the scientific com-
puting community. In the following two sections we de-
scribe ROSE mechanisms in simplifying the development
of translators and Babel capabilities in aiding the genera-
tion of components.

2.1 ROSE

The ROSE infrastructure allows building source-to-
source translators by offering a front-end for parsing C++
code and generating an Abstract Syntax Tree (AST), a mid-
end for restructuring the AST representation of the source
code, and a back-end to unparse C++ source code from the
AST.

We use the Edison Design Group (EDG) C++ front-end
[2] to parse C++ programs. After invoking the EDG parser
on an input C++ program, we then translate the C-style
EDG internal representation of the program into an object-
oriented abstract syntax tree (AST), Sage III, which we have
developed as a revision of the Sage II [13] intermediate rep-
resentation. Current work includes collaboration with Rice
to add F90 support to ROSE through use of the Open64
compiler infrastructure.

The mid-end supports restructuring of the Sage III AST.
The programmer can add code to the AST by specifying a
source string using C++ syntax, or by manually construct-
ing subtrees of the AST. A program transformation consists
of any required program analysis and a series of AST re-
structuring operations each of which specifies a location in
the AST where a code fragment should be inserted, deleted,
or replaced.



The back-end unparses the AST and generates C++
source code. Header files can either be unparsed where
they are included in source files, or#include directives
can be generated for the header files. This feature is impor-
tant when transforming user-defined data types, for exam-
ple, when adding compiler-generated methods.

2.2 Babel

Compared with other IDL technologies, Babel/SIDL has
several features critical for scientific computing such as in-
trinsic support for dynamically allocated, arbitrarily strided
multidimensional arrays and complex numbers. It also sup-
ports overloading method names. Whereas CORBA em-
phasized remote method invocation, Babel emphasizes fast,
in-process language interoperability [12]. Babel also has
extensive FORTRAN 77/90/95 support, even allowing Ba-
bel arrays to be manipulated as native FORTRAN 90 ar-
rays [16]. The Babel team is currently developing remote
method invocation (RMI) capabilities.

Babel includes two parts: the code generator and the run-
time library. The code generator parses SIDL and gener-
ates client and/or server bindings in C, C++, FORTRAN 77,
FORTRAN 90, Python, and Java. The runtime library con-
tains base classes of the object model which are themselves
defined in SIDL and additionally, bits and pieces needed to
enhance portability and support interoperability.

IDLs are fundamentally different than typical program-
ming languages. IDLs define types without providing code
to implement them. Often, IDL resembles stripped down
C++ header files. In SIDL (scientific IDL), users can define
new types (classes and interfaces), name operations on their
types, specify arguments of their operations, and designate
different scopes to avoid symbol name collision. Unlike
C++, each argument is explicitly annotated asin , out , or
inout to indicate whether data is being passed as an in-
put, produced as an output, or used as input and output for
the operation. SIDL has only declarative statements and no
mechanism for defining states or algorithms.

Babel’s main purpose is to enable scientific library de-
signers to make their code language independent and thus
reach a broader audience [18].Babelizingan existing li-
brary typically involves writing a SIDL interface specifica-
tion, running the Babel code generator to generate imple-
mentation bindings (calledImplsfor short) in the same lan-
guage as the library, and hand coding the empty Impls to
dispatch to the existing software. Though Babelizing code
requires manual programming, customers find it easier than
generating a single language wrapper by hand. Some even
welcome the opportunity to craft a modern object-oriented
interface over their legacy procedural code.

More details about Babel-generated Impls are needed for
discussion in later sections. Recall that implementation de-

tails of software are intentionally inexpressible in SIDL.
Therefore, when Babel first generates Impls, the bodies of
the methods, member functions, subroutines, or procedures
(depending on what programming language Babel’s gener-
ating Impls for) are empty. The library developer needs to
fill in the Impls with an actual implementation or code to
dispatch their existing code. Since Impls are generated code
that contain hand-edited fragments, these fragments are lo-
cated insplicer blocks. Contents of splicer blocks are pre-
served across multiple runs of Babel as SIDL specifications
evolve. Automatically generating contents for the splicer
blocks is one of the challenges for this joint work.

3 Automated Code Generation, Transforma-
tions, and Analysis

The processing steps for automatically translating a li-
brary into components are summarized in Figure 1. Essen-
tially, the steps are

1. SIDL and C++ implementation information extraction.
This step involves using ROSE Translator T1 to pro-
cess thelibrary exampleto generate SIDL code and
Non-SIDL C++ Informationfor ROSE Translator T2.

2. Stub and Impl generation.
Babel is called using the SIDL file from step 1 to gen-
erate all stubs for clients in all supported languages as
well as the corresponding C++Impl files with empty
splicer blocks.

3. Implementation bridge generation.
The ROSE Translator T2 is called usingNon-SIDL
C++ Informationand the C++Impl files from step 2 to
insert dispatching code into the initially emptysplicer
blocks.

To simplify the process each of these steps can be fully con-
tained within a single program.

The input to the ROSE Translator T1 in Figure 1 includes
two objects: a target library and a simplelibrary example
program. Thelibrary exampleprogram is constructed by
hand and must include all the header files required to de-
fine the target library’s implementation. Only the library’s
header files must be seen, although more sophisticated anal-
ysis is possible by processing the entire library as described
in Section 3.3. Thelibrary exampleprogram can be as sim-
ple as a one line file that includes a single header file. For
example, a file containing the line#include <A++.h>
is a sufficientlibrary exampleprogram for processing the
A++ library.

Given the target library and an example program, the
ROSE Translator T1 generates two outputs: SIDL interface
files and Non-SIDL C++ information. The SIDL interface



Library Library

Component

C++Lib

Headers

C++Lib
Code

C++Lib

Headers

C++Lib
Code

Interfaces

SIDL

IMPL

ROSE

Translator

ROSE

Translator

T2

T1

Non−SIDL
C++ Info

Infrastructure

ROSE
IMPL
with
SBs

Stubs

IORs

Skeletons

App

Code

Babel

Figure 1. Component Generation Process with ROSE-Babel infrastructure. Circles represent (gener-
ated) files and arrows show the data-flow of these files. The dashed lines show that the translators T1
and T2 use the ROSE infrastructure. The library is not modified and becomes part of the generated
component.

files are later used as inputs to Babel, which then generates
components specifications and Impl files with empty splicer
blocks. In greater detail, the ROSE Translator T1 performs
the following substeps of step 1:

1.a. Constructing AST.
The AST at this point represents all library declara-
tions. Only classes, structs, functions and member
functions are of particular interest, but the AST also
contains all comments, pragmas, variables, typedefs,
etc.

1.b. Collecting information about classes and functions

Class definitions. Builds the list of library classes,
each of which is translated into SIDL classes.

Member functions. This step builds a list of all mem-
ber functions, each of which is put into its associ-
ated SIDL class previously constructed (preced-
ing step).

Non-member functions. Builds a list of all non-
member function, each of which is put into a

SIDL class called “Global”.

1.c. GeneratingNon-SIDL C++ Information
A file containing the list of#include directives is
generated. The file is specified on the command-line as
library specific data to be read by the ROSE Translator
T2.

The above steps preserve the original structure of the
library. The generated SIDL code does not re-organize
the library other than presenting a list of global functions,
classes, and member functions. To add more structures to
the generated code, the following information can be used:
directory and filename information, function name prefix
information, pragmas in the library headers to specify map-
ping of functions to SIDL interface classes, and an alterna-
tive external annotation mechanism for specifying the map-
ping of functions to SIDL interface classes. These heuristics
are part of our ongoing research.

The ROSE Translator T2 requires two inputs: the Impl
files from Babel and the non-SIDL C++ information from
ROSE Translator T1. Since the SIDL language doesn’t



permit the specification of#include directives, the non-
SIDL information includes the list of#include directives
present in the library example program processed by T1.
These directives are required for declaring the library inter-
face in the new Impl files generated by The ROSE Transla-
tor T2, which performs the following substeps of step 3:

3.a. Inserting the list of#include directives into the Impl
file’s appropriate splicer block.

3.b. Inserting code to map each input parameter of each
Impl function to the appropriate parameter of the li-
brary’s function call.

3.c. Inserting library function calls into the appropriate
Impl function’s splicer block.

Through library annotations or analysis, we can exploit
SIDL specific features that are not present in C++ (e.g.,
specification of side-effects to function parameters viain ,
out , andinout ), see Section 3.3. A third ROSE Transla-
tor could automate analysis of the library, using side-effect
analysis to verify the correctness of parameter annotations
or to use an in or out specification in lieu of the default in-
out. This narrower specification of parameters enables sub-
sequent compiler optimization.

3.1 Generation of SIDL

Because the set of C++ features is much larger than those
present in SIDL, mapping from C++ to SIDL requires some
complex translation. Much information could be lost in this
process, although it could conceivably be saved in theNon-
SIDL C++ Informationand used within the marshaling of
function parameters between the Impl functions (generated
by Babel) and the target library’s function calls. The follow-
ing issues have been considered in the existing translation
of C++ code to SIDL:

C++ overloaded functions. Additional information is re-
quired within SIDL to support overloaded operators.

C++ overloaded operators.All overloaded operators are
given unique names within the generation of SIDL.
These names are mapped back to the respective over-
loaded operators within the transformation of the Impl
files.

C++ function pointers. These are handled using a SIDL
opaque. Some function pointers will be replaced by a
SIDL interface.

Multiple inheritance. SIDL supports only single inheri-
tance for classes and multiple inheritance of interfaces
(similar to Java and Objective C). Through a level of

indirection (supported in the interface parameter mar-
shaling), multiple inheritance models in C++ can be
reduced to single inheritance models appropriate for
representation in SIDL.

C++ templates. There is no C++-like templating mecha-
nism available as part of the SIDL interface. How-
ever, each template instantiated internally in the tar-
get library is represented as atemplate-instantiation
class within ROSE, which can be translated to any
non-template class within SIDL. This permits the use
of templates within C++ libraries so long as they are
instantiated over a closed set of parameterized types.
This detail requires that thelibrary exampleprogram
triggers instantiate (uses) all templates.

SIDL support for arrays. SIDL supports arrays of spe-
cific types, but functions passing pointers to data and
an integer describing its length can skip the use of the
SIDL array abstractions. This avoids a translation am-
biguity.

Variable arguments. C++ methods with variable numbers
of arguments, using the ellipsis. . . in their declaration
must be converted to a method with a SIDL array con-
taining a generic argument base class.

SIDL’s opaque type is necessary for low level routines
with application programming interfaces (APIs) that require
address pointers. For example, an opaque would have to
be used for the ANSI C routinesignal which requires
a function pointer as an argument because our tool cannot
change the underlying implementation to use a functor ap-
proach. A routine such as ANSI C’smalloc , would need
to use opaque as a return value. Certain device drivers might
also require particular addresses as arguments.

3.2 Transformation of Impl files

Babel generates both stubs for other languages to call
and Impl files to invoke the implementation of the library
functions. Instead of generating new Impl files, which is
handled by Babel, we transform the Impl files generated by
Babel by inserting calls to the associated library functions
and marshaling all parameters.

3.3 Library Analysis

An optional step is to process the target library imple-
mentation and analyze each function in the library to deter-
mine the side-effects upon their parameters. The side-effect
analysis has been implemented as a result of collaborations
with Cornell and will permit a verification of (in , out , and



inout ) annotations and or the generation of such annota-
tions. The correct classification of interface function pa-
rameters is mostly a performance issue. The current con-
servative default classification is to classify all function pa-
rameters asinout . An additional processing step using
ROSE could automate much of the classification of func-
tion parameters. In some cases, lack of sufficient program
analysis, in particular pointer alias analysis, may require the
process be semi-automatic rather than fully automatic. For
example, side-effect analysis could signal that a potential
alias between a locally-modified variable v and a parameter
p prevents declaring p as an in parameter rather than inout.
This ambiguity could be resolved by an annotation, spec-
ified through ROSE’s annotation language, which declares
that v does not alias p.

3.4 Future Extension: CCA Componentization

The CCA component framework has two require-
ments: componentsand ports. A component is an in-
dependent unit of composition that must implement the
gov.cca.Component interface. Ports are capabilities,
or services, of a component that must be specified in SIDL
as extensions ofgov.cca.Port .

Our translator will need to generate a set of classes im-
plementinggov.cca.Component . This interface has
one method,setServices , that must notify the frame-
work about which ports the component can provide (known
asprovides ports) and which ports the component requires
(known asuses ports). Identifying the mapping from the
original set of C++ classes to SIDL classes implementing
gov.cca.Component is a major challenge. In some
cases, it might be best to treat each concrete C++ class as a
component, and in other cases, the whole multi-class library
should be considered a single component.

Our translator will also need to generate a set of ports
based on the C++ classes in the original API. The first step
will be to create a port for each C++ class involved. De-
termining better methods for choosing which C++ classes
should be included in each type of port will need to be ex-
plored. Provides portsare basically services provided to
the library’s user; hence, they can be gleaned from the inter-
faces of a class. However, auses portindicates services pro-
vided by the component’s client that are needed by the com-
ponent. Designating something as auses portof a compo-
nent means that the component needs exactly one instance
of the port corresponding to the initial C++ class, which is
very challenging to determine from the C++ header files.
The underlying code may be able to handle zero through
many instances.

4 Related Work

Our aim is to automate the generation of components
from legacy scientific applications. This process includes
two phases: extracting component interfaces and producing
implementations that bind the interface specifications with
the original software.

A number of research efforts have aimed at extracting
components from existing software. Specifically, many
clustering techniques [19, 20, 15] have been developed to
analyze the function calls within a library system and to
identify reusable components within the library. We cur-
rently focus on making all individual classes in a library
reusable. Our work can be combined with the clustering
techniques to provide better component interfaces for li-
braries. Beck and Eichmann [10] have also explored the
extraction of interfaces from source code. They have fo-
cused on reducing the interfaces (and code) to only those
methods that are actually needed by a user. Their solu-
tion is language-specific; whereas we focus on extracting
language-neutral specifications and automating the library
bindings.

To automate the second phase of generating components,
Babel provides the translation from the interface specifica-
tion to implementation stubs. Our work then generates dis-
patching code that fills in these stubs. Prior efforts have
developed several systems that support automatic bridging
of pairs of different languages. For example, SWIG [6, 9],
a wrapper and interface generator, supports automatic bind-
ings between C/C++ and common scripting languages such
as Tcl, Python and Perl. In contrast, we leverage Babel’s
intermediate representation, so component developers do
not have to be concerned with providing a point-to-point
mapping for their users. Furthermore, Babel’s RPC-like
mechanism will enable future remote access to the libraries
wrapped by our infrastructure. Chasm [22, 23], another
point-to-point adapter generator, employs static compiler
analysis to automatically connect C++ applications to FOR-
TRAN 90 libraries. Our work, on the other hand, automates
the connection of C++ libraries with applications written in
a variety of scientific computing programming languages.
By leveraging SIDL, which has been adopted as the spec-
ification language for scientific components by the Com-
mon Component Architecture Forum [1, 8], we enable the
automatic generation of CCA-compliant components from
existing libraries.

Similar to our work, Rational Rose [4], a commercial
general-purpose graphical modeling tool, supports round-
trip engineering from user applications to both CORBA
and COM specifications [11, 17] using the Unified Model-
ing Language (UML) [7] as the intermediate representation.
Our work, on the other hand, does not require the transla-
tion from yet another intermediate language. By virtue of



using Babel/SIDL, we also have an intermediate layer that
is tailored for scientific computing.

5 Conclusions and Future Work

This paper presents work on the automated generation of
components. The work is incomplete presently but shows
both the automation of the SIDL description and the con-
nection of the generated code (from SIDL) back to the li-
brary. Both pieces are essential to automate the connection
to an arbitrary library. To enable automatic generation of
CCA components, additional analysis and transformations
of the resulting SIDL objects is necessary to properly de-
fine and designate ports and implement the CCA required
setServices() method.

All known “automatic” language wrapping tools require
some degree of hints, pragmas, structured comments, or the
like just to enable a one way connection from the calling
language to the existing code. To “automatically” Babelize
an existing C++ code is even more challenging, but offers
more capabilities if successful. Taking the entire body of
Babelized code and packaging it up as a component actually
involves analysis of how the code is used and creation of
new functions in the interface. The ultimate goal is to break
any large existing code up into useful constituent CCA com-
ponents.

Although the current ROSE infrastructure is limited to
C and C++, the essential motivations are language indepen-
dent. Analogous reverse mappings of FORTRAN to SIDL
would require FORTRAN-specific analysis and techniques.

Specific details to C and C++ are addressed separately.
It is conceivable that all C++ language feature could be
mapped to SIDL without extension, but with some library
specific translation support. Still, such tools could be made
easy to build in the future, perhaps even automatically gen-
erated.

6 Acknowledgments

This work was performed under the auspices of the U.
S. Department of Energy by the University of California,
Lawrence Livermore National Laboratory under Contract
No. W-7405-Eng-48. UCRL-CONF-208403

References

[1] Common Component Architecture forum. http://www.cca-
forum.org.

[2] Edison Design Group. http://www.edg.com.
[3] Object Management Group’s CORBA Component Model.

Available online from the OMG http://www.omg.org/.
[4] Rational Rose UNIX. http://www-

3.ibm.com/software/awdtools/developer/rose/unix/.

[5] Sun Microsystems’ Enterprise JavaBeans Down-
loads and Specifications. Available online from Sun
http://java.sun.com/products/ejb/docs.html.

[6] SWIG. http://www.swig.org.
[7] Unified Modeling Language. http://www.uml.org.
[8] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn,

L. McInnes, S. Parker, and B. Smolinski. Toward a com-
mon component architecture for high-performance scientific
computing. InProceedings of the 8th High Performance
Distributed Computing, 1999.

[9] D. M. Beazley. SWIG: An easy to use tool for integrating
scripting languages with C and C++. InProceedings of the
4th Annual Tcl/Tk Workshop, Monterey, CA, July 1996.

[10] J. Beck and D. Eichmann. Program and interface slicing
for reverse engineering. InProceedings of the 15th Inter-
national Conference on Software Engineering (ICSE ’93),
pages 509–518, May 1993. Baltimore, Maryland.

[11] N. Bereny. Rose 101: Component Modeling with Rose 98.
Rose Architect, January 1999.

[12] D. E. Bernholdt, W. R. Elwasif, J. A. Kohl, and T. G. W.
Epperly. A component architecture for high-performance
computing. InProceedings of the Workshop on Performance
Optimization via High-Level Languages and Libraries, New
York, NY, June 2002.

[13] F. Bodin, P. Beckman, D. Gannon, J. Gotwals, S. Narayana,
S. Srinivas, and B. Winnicka. Sage++: An object-oriented
toolkit and class library for building fortran and C++ restruc-
turing tools. InProceedings. OONSKI ’94, Oregon, 1994.

[14] D. Box. Essential COM. Addison-Wesley Professional,
1997.

[15] Y. Chiricota, F. Jourdan, and G. Melancon. Software com-
ponents capture using graph clustering. InProceedings of
the 11th International Workshop on Program Comprehen-
sion (IWPC 2003), pages 217–225, May 2003.

[16] T. Dahlgren, T. Epperly, and G. Kumfert.Babel User’s
Guide. Lawrence Livermore National Laboratory, Liver-
more, CA, 0.8.8 edition, 2003.

[17] J. Hammond. CORBA and Rational Rose – An Insider’s
View. Rose Architect, April 1999.

[18] S. Kohn, G. Kumfert, J. Painter, and C. Ribbens. Divorcing
language dependencies from a scientific software library. In
10th SIAM Conference on Parallel Processing, Portsmouth,
VA, March 2001.

[19] R. Koschke and T. Eisenbarth. A framework for experimen-
tal evaluation of clustering techniques. InProceedings of
the 8th International Workshop on Program Comprehension
(IWPC 2000), pages 201–210, June 2000.

[20] B. S. Mitchell and S. Mancoridis. Modeling the search land-
scape of metaheuristic software clustering algorithms. In
Proceedings of the 7th Annual Genetic and Evolutionary
Computing Conference (GECCO ’03), pages 2499–2510,
July 2003.

[21] D. Quinlan, M. Schordan, B. Miller, and M. Kowarschik.
Parallel object-oriented framework optimization.Concur-
rency and Computation: Practice and Experience, 2003.

[22] C. E. Rasmussen, K. A. Lindlan, B. Mohr, and J. Striegnitz.
CHASM: Static analysis and automatic code generation for
improved Fortran 90 and C++ interoperability. InProceed-
ings of the Los Alamos Computer Science Symposium 2001
(LACSI’01), October 2001. Santa Fe, New Mexico.



[23] C. E. Rasmussen, M. J. Sottile, S. S. Shende, and A. D. Mal-
ony. Bridging the language gap in scientific computing: the
Chasm approach. (in submission).

[24] M. Schordan and D. Quinlan. A source-to-source architec-
ture for user-defined optimizations. InJMLC’03: Joint Mod-
ular Languages Conference, volume 2789 ofLecture Notes
in Computer Science, pages 214–223. Springer Verlag, Aug.
2003.


